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The Journal of Immunology

Simulation of B Cell Affinity Maturation Explains Enhanced
Antibody Cross-Reactivity Induced by the Polyvalent Malaria
Vaccine AMA1

Sidhartha Chaudhury, Jaques Reifman, and Anders Wallqvist

Polyvalent vaccines use a mixture of Ags representing distinct pathogen strains to induce an immune response that is cross-reactive

and protective. However, such approaches often have mixed results, and it is unclear how polyvalency alters the fine specificity of the

Ab response and what those consequences might be for protection. In this article, we present a coarse-grain theoretical model of

B cell affinity maturation during monovalent and polyvalent vaccinations that predicts the fine specificity and cross-reactivity of the

Ab response. We stochastically simulate affinity maturation using a population dynamics approach in which the host B cell rep-

ertoire is represented explicitly, and individual B cell subpopulations undergo rounds of stimulation, mutation, and differentiation.

Ags contain multiple epitopes and are present in subpopulations of distinct pathogen strains, each with varying degrees of cross-

reactivity at the epitope level. This epitope- and strain-specificmodel of affinitymaturation enables us to study the composition of the

polyclonal response in granular detail and identify the mechanisms driving serum specificity and cross-reactivity. We applied this

approach to predict the Ab response to a polyvalent vaccine based on the highly polymorphic malaria Ag apical membrane antigen-1.

Our simulations show how polyvalent apical membrane Ag-1 vaccination alters the selection pressure during affinity maturation to

favor cross-reactive B cells to both conserved and strain-specific epitopes and demonstrate how a polyvalent vaccine with a small

number of strains and onlymoderate allelic coverage may be broadly neutralizing. Our findings suggest that altered fine specificity and

enhanced cross-reactivity may be a universal feature of polyvalent vaccines. The Journal of Immunology, 2014, 193: 2073–2086.

T
he humoral or Ab response to a vaccine is often a key
component in its ability to induce protection against
a targeted pathogen. This Ab response is polyclonal in

nature, arising from multiple clonal B cell populations, each
producing unique Abs with respect to their binding affinity and Ag
epitope. Although this complex polyclonal response can be mea-
sured in the aggregate, it has only recently become possible to
quantitatively assess the individual contributions of the clonal
subpopulations. The fine specificity of the Ab response can play
a major role in vaccine efficacy, because distinct Ag epitopes can
vary significantly in terms of their neutralization and their degree of
conservation across pathogen strains. Although polyvalent vac-
cines, which use a mixture of Ags representing multiple pathogen
strains, have been used to broaden the efficacy of a vaccine Ag, it is

still unclear how such formulations alter the fine specificity of the
Ab response and what those implications might be for protection.
The polyclonal response is an aggregate of individual mono-

clonal responses, each with unique properties with respect to
binding epitope, binding affinity, and neutralization, and the fine
specificity of this polyclonal response can be a critical determinant
of efficacy. Sera with similar overall Ab titers to a given Ag can vary
significantly in neutralization or in cross-reactivity to alternate
pathogen strains. Recently, there have been a number of efforts to
rationally design vaccine Ags that exploit fine specificity to target
highly neutralizing or highly conserved epitopes that are poorly
immunogenic in natural infections, as in the case of HIV-1 (1, 2)
and respiratory syncytial virus (3).
The serum Ab response is the result of affinity maturation within

the germinal centers (GCs) of lymph nodes in the host lymphatic
system. The host immune system is thought to contain $107–108

naive B cells (4), each expressing a unique BCR created through
the somatic recombination of several BCR gene segments. During
a primary infection or vaccination, a subset of B cells that express
BCRs with some threshold Ag-binding affinity (Ag-specific
B cells) bind to the Ag and undergo activation. Within the GC,
these B cells undergo repeated rounds of stimulation, mutation,
and replication to selectively expand B cell clonal lines with in-
creasing Ag-binding affinity (5). In the latter stages of affinity
maturation, GC B cells undergo differentiation into plasma cells
and memory cells. Plasma cells secrete a soluble form of the BCR
as Abs that make up the serum Ab response, whereas memory
cells remain dormant until reactivation during secondary exposure
to the Ag months or years after the initial infection.
Mathematical modeling of affinity maturation relies on a

mechanistic “first principles” approach to immunology; theories
and hypotheses describing the underlying immune processes are
applied in an in silico manner to explain experimental results and
clinical observations. Key components of the immune system,
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such as lymphocytes (B and T cells), Abs, cytokines, and Ags, are
modeled dynamically, and their levels grow or shrink as they in-
teract with each other throughout a simulated immunological
event, such as an infection or vaccination. Such modeling efforts
have made substantial contributions to our understanding of im-
munology. Seminal studies in 1970 and 1971 by G. I. Bell (6–8)
led to the first computer simulations of affinity maturation and
demonstrated the theoretical basis for clonal selection in the Ab
immune response. Subsequent work by Oprea, Perelson, and
Kepler (9–11) developed simulation approaches to study somatic
hypermutation and GC dynamics. Contributions by later modeling
and simulation efforts included the elucidation of the role of key
immune system properties, such as repertoire size, diversity, and
somatic mutation rates (12, 13), and the development of detailed
kinetic models of B cell GC dynamics and morphologies (9, 14,
15). Pioneering research by Perelson and other investigators (12,
16, 17) helped to develop an immunological “shape space” model
for representing complex shape-based Ab–Ag interactions. Sub-
sequent work by Smith et al. established parameters for a shape
space model using immunological data (18) and later adapted it
for use in a stochastic simulation of affinity maturation to accu-
rately predict the efficacy of repeated influenza vaccinations from
clinical data (19). Beyond studying affinity maturation, compu-
tational immunology approaches been used to study T cell acti-
vation (20, 21) and specificity (22), viral infection and adaptation
(23–27), and innate immunity (28).
In this article, we present a novel coarse-grain theoretical model

of B cell affinity maturation to simulate the progression of an Ab
response against a monovalent or polyvalent Ag. We model affinity
maturation using a B cell population dynamics approach. The host
B cell repertoire is represented explicitly, and individual B cell
subpopulations undergo rounds of stimulation, mutation, and
differentiation. Ags in this model contain multiple epitopes and are
present as distinct strains, each with specified degrees of cross-
reactivity at the epitope level. During the simulation, B cells
bind with Ag and become stimulated, mutate, and proliferate.
GC B cells differentiate into memory cells, which have long half-
lives, and plasma cells, which produce Abs. Abs, in turn, bind with
Ag and neutralize or clear it. BCR/Ab–Ag interactions are modeled
using the immunological shape space model developed by Smith
et al. (18), and the simulation is carried out using the Gillespie
algorithm (26, 29). Our approach is distinct from previous B cell
repertoire models (12, 13) in its use of a multiple-strain and multiple-
epitope representation of the Ag. This allows us to simulate the Ab
response with respect to epitope-level and strain-level specificity,
which is critical to modeling vaccine efficacy for multiple-strain
or multiple-serotype pathogens, such as Plasmodium falciparum
or dengue virus. Furthermore, to our knowledge, this model rep-
resents the first computational simulation of affinity maturation
for a real-world polyvalent vaccine candidate, enabling us to iden-
tify potential immune mechanisms driving serum specificity and
cross-reactivity in polyvalent vaccine formulations.
Antigenic variation between pathogen strains remains one of the

greatest challenges in vaccine design. This variation can be the
result of antigenic drift, such as in the case of the influenza virus
(30, 31), or the result of pathogen evolution in response to immune-
selective pressure, such as in the case of HIV (32–34) and both
hepatitis B (35) and C (36). Antigenic variation can be addressed
through the use of polyvalent vaccines, and understanding the
mechanisms that guide the polyvalent immune response is critical
to vaccine design. We hypothesize that the complex polyclonal Ab
response to a polyvalent vaccine can be accurately simulated using
a model of affinity maturation that takes into account multiple
epitopes and strains, along with experimental information regarding

the relative immunogenicity and antigenic distance of various
epitopes on the Ag. We applied our model to examine the mecha-
nisms guiding the specificity and cross-reactivity of the Ab response
to a polyvalent vaccine based on the highly polymorphic malaria Ag
apical membrane antigen-1 (AMA1).
The malaria vaccine candidate AMA1 is a subunit-based vaccine

against P. falciparum that induces protection (37), but only against
parasite strains that are closely related to the vaccine (38–40). A
recent phase 2b AMA1 vaccine trial in 1–6-y-old children in Mali
found 64% efficacy against malaria caused by vaccine-like strains,
underscoring its potential as a malaria vaccine (41). Unfortunately,
AMA1 displays immense antigenic variation:.10% of its residues
are polymorphic, and .200 unique haplotypes have been identi-
fied (42, 43). A crystal structure of AMA1 reveals that the protein
consists of three domains that present two immunologically dis-
tinct regions: a conserved face, consisting of a cluster of largely
conserved epitopes along domain I and III, and a polymorphic
face, consisting of a cluster of highly polymorphic epitopes along
domain II (44, 45). Previous studies suggested that no fewer than
6–10 strains of AMA1, and possibly many more, must be included
in a polyvalent vaccine to provide sufficient allelic coverage for
broad protection (42, 43, 46). However, several studies developed
polyvalent formulations of AMA1, using two to six strains, and
demonstrated significant cross-reactivity and protection relative to
the monovalent vaccine of any single strain (47–50).
In a recent study, Dutta et al. (47) showed that the tetravalent

formulation had surprisingly high efficacy against a diverse panel of
22 non–vaccine strains of P. falciparum. Extensive epitope mapping
of the Ab response revealed that the polyvalent vaccine induced an
enhanced response toward the conserved face of AMA1, but this
enhancement alone was insufficient to explain the broadly neutral-
izing humoral response. Furthermore, it was experimentally difficult
to determine to what degree the cross-reactivity of the polyvalent
response was a result of strain-transcending Abs that neutralize
all strains or the result of overlapping partial cross-reactivity of
strain-specific Abs. We applied our stochastic model of affinity
maturation using a two-epitope model of AMA1 to identify pos-
sible answers to these questions and provide a mechanistic ex-
planation underlying this broadly cross-reactive Ab response.

Materials and Methods
Stochastic model for affinity maturation

In this study, we used the immunological shape space model developed by
Smith et al. (18) to model multiple epitopes for multiple strains of the
polymorphic AMA1 Ag. This allowed us to describe the antigenic rela-
tionships between each strain, at the epitope level, with respect to B cell
specificity and cross-reactivity. We used a B cell population dynamics ap-
proach, in conjunction with this immunological shape space model, to sim-
ulate how a B cell repertoire evolves in response to exposure to these epitopes
during affinity maturation in the context of a specified vaccination schedule.

We modeled B cell affinity maturation as a set of rate reactions, similar to
chemical reactions, that describe the underlying immunological processes,
such as Ag binding or B cell replication. We carried out stochastic sim-
ulations of affinity maturation by applying the Gillespie algorithm to this set
of rate equations outlined below. The Gillespie algorithm was adapted for
modeling the immune system, as described by Woo and Reifman (26). The
main parameters that were set to model AMA1 in this simulation were the
number of epitopes in the AMA1 Ag, the relative immunogenicity of each
epitope, and the antigenic distance of each epitope between different
AMA1 strains. These parameters were determined using previous experi-
mental data from monovalent AMA1 vaccination studies (47, 48, 51). We
coded the algorithm in Python, and the source code is freely available from
the authors by request.

Immunological shape space

Abs and BCRs interact with Ags through the shape complementarity be-
tween theAb/BCR paratope and the Ag epitope.We used the immunological
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space model developed by Smith et al. to describe the BCR/Ab and Ag
shape-based interactions (18, 19). Briefly, the shape of the paratope (on the
BCR or Ab) and epitope (on the Ag) is symbolically represented as a 20-
character string made up of 4 unique characters that defines a space of 1012

distinct epitope and paratope shapes. In our model, this string serves as the
genotype sequence defining the paratope or epitope. Any mutations during
affinity maturation are direct mutations of this genotype sequence and can
be thought of as nonsilent mutations that alter the shape of the paratope.
Likewise, any differences in this genotype sequence between epitopes re-
flect polymorphisms that alter the epitope structure. The number of phe-
notypically distinct BCRs is thought to be $1010 (52) and when including
effects, such as somatic mutations, as high as 1016 (53). The simplified
representation of Ab Ag “shape space” in our model allows us to represent
1012 possible BCR sequences (18); increasing the length or number of
unique characters that makes up the paratope sequence increases the
number of possible BCR sequences that can be represented.

The binding affinity Qij between the paratope i and the epitope j is
a function of the Hamming distance between the paratope and epitope
genotype sequences, d(i,j), and is described by Eq. 1. The epitope and
paratope sequences have equal lengths, and the Hamming distance was
calculated following a simple linear comparison of the sequences without
any further sequence alignment.

Qij ¼
8<
:

1; dði; jÞ,a
εa�dði;jÞ; a � dði; jÞ � l

0; dði; jÞ.l
ð1Þ

In this approach, the parameter « reflects the fold increase in apparent
binding affinity following a single beneficial mutation for BCR and Ab
binding (εB and εAb, respectively). In the model, εB and εAb, are set to
values of 10 and 2.5, respectively. The εB parameter for B cells is larger
than εAb for Abs, because unlike Abs, which bind to Ag through a single
Ab–Ag–binding event, BCR activation is a cooperative process that
requires multiple individual BCR–Ag–binding events. In our model, this
cooperativity is represented by a larger fold change in apparent binding
affinity of BCR–Ag interactions compared with Ab–Ag interactions. The
parameter a is the minimum Hamming distance that defines maximum
binding affinity (19). This value was set to 4 and reflects the degeneracy in
paratope sequences that can achieve maximum binding affinity to the
epitope. Finally, l is the maximum Hamming distance that defines the
threshold binding affinity, where the binding affinity is nonzero and is set
to 7 based on parameterization of immunological data by Smith et al. (18).
These values of a and l result in four BCR binding-affinity levels that span
a 104-fold difference in binding affinity between naive and “fully” matured
B cells. Unless otherwise specified, all immunological shape space
parameters were set to the values defined by Smith et al. (19).

The antigenic distance between strains for the same epitope is equivalent
to the Hamming distance between the genotype sequences that define each
epitope. This antigenic distance can be adjusted based on the cross-
reactivity between those epitopes. Conserved epitopes have low anti-
genic distances between them, whereas polymorphic or diverse epitopes
have higher antigenic distances between them. Values for antigenic distance
can range from 0 (for identical epitopes) to.10 (for significantly dissimilar
epitopes).

Immune system components

In this model, each Ag has its own genotype, as described above, denoted by
the subscript i. The Ag genotype contains the epitope genotypes for two
epitopes. All B cells and Abs in the system are likewise denoted by
a paratope genotype, subscript j. There are four types of B cells: naive N,
GC B, plasma P, and memory M, along with Abs, all of which have par-
atope genotypes.

Rate equations

Wemodeled affinity maturation using a set of equations that describe B cell
stimulation and proliferation, memory and plasma cell differentiation, Ab
production, and Ag clearance. In the system, the genotype of every B cell
and Ag epitope was explicitly described (by a subscript in the following
equations). All parameters used below are summarized in Table I.

Throughout the simulation, each B cell clonal line is represented as
a “subpopulation” and followed individually. As new BCR genotypes are
introduced, either through the formation of naive B cells or through so-
matic mutation of existing B cells, a new clonal line corresponding to that
genotype is added to the system, with an initial population of 1, and it
increases or decreases as the simulation progresses. The overall pop-
ulations of naive B cells, GC B cells, memory cells, plasma cells, and Abs
are each represented as sets of clonal subpopulations.

In the model, there was a revolving population of 5 3 107 naive B cells
(N) that was continuously replenished and whose formation and decay
were described as zero-order and first-order reactions, respectively. The
decay rate gN of naive B cells was set based on an estimated naive B cell
half-life of 4.5 d (Eq. 2a). The B cell formation rate (kN) was set such that
a steady-state population size of 5 3 107 naive B cells was maintained for
the given decay rate (Eq. 2b). A newly formed B cell was assigned
a random paratope genotype (denoted as j).

Nj ����!
PAggN

0 ð2aÞ

0→
kN

Nj kN ¼ 53 107 � PAggN ð2bÞ

Two adjustments were made to modeling the naive B cell population.
First, because the vast majority of naive B cells in the host repertoire have no
binding affinity to a given set of Ags, for reasons of computational effi-
ciency, only naive B cells with a nonzero binding affinity to any Ag in the
system were explicitly modeled using Eq. 2a and 2b. This was done by
modifying the decay and formation rates with the probability that a random
naive B cell would be specific to a given Ag in the system (PAg), which was
set to 1025 (18). Second, naive B cells were limited to paratope genotypes
with a minimum Hamming distance of 7 to any one epitope. This reflects
the more limited diversity and low binding affinity of germ line BCRs
expressed on naive B cells.

A starting naive B cell repertoirewas generated with two criteria: that there
be PAg · 5 3 107 Ag-specific naive B cells for each Ag (based on the Ag-
specific B cell frequency PAg = 1025) and that naive B cells be evenly
distributed between each epitope. First, for each Ag, PAg · 5 3 107 B cells
specific to either epitope 1 or epitope 2 were randomly generated to create
an initial B cell repertoire. Second, this initial B cell repertoire was “reba-
lanced” to ensure that the appropriate number of B cells (PAg · 53 107) was
present for any single Ag. This was done by randomly removing excess
B cells for a given Ag and epitope until an equal number of B cells were
present for all epitopes. Without rebalancing the initial B cell repertoire,
B cells specific for cross-reactive epitopes shared between two Ags would be
overrepresented because the B cells generated to be specific for one Ag
would also be specific for a second Ag. This would increase the total number
of Ag-specific B cells over the intended value (PAg · 5 3 107) and increase
the proportion of Ag-specific B cells that target the cross-reactive epitope.

We modeled B cell stimulation as a second-order reaction between the
Ag and the B cell. The rate of this reaction for a B cell with a BCR paratope
of j (Nj for naive B cells, Bj for GC B cells) was determined by the base
stimulation rate (sN and sB for naive and GC B cells, respectively), the
immunogenicity of Ag epitope i (gi), and the binding affinity between the
paratope j and epitope i (Qij [Eq. 1]). The immunogenicity parameter, gi,
of an epitope (i), reflects that epitope’s ability to elicit an immune re-
sponse, which, biologically, can be the result of a multitude of factors from
epitope accessibility or arrangement to residue composition and similarity
to self-Ags. We set values for immunogenicity for each epitope based on
the relative Ab titers for each epitope determined from experimental data
(see Results). The stimulation rate for both naive and memory B cells was
set to (3 d)21, which reflects experimental data that suggest that 50–80% of
these cells begin division ∼75 h following Ag exposure (54). The B cell
stimulation reaction has a maximum rate of smaxBj, which reflects the
maximum rate of GC B cell stimulation in the presence of excess Ag. As
shown below, we modeled activation and migration of naive B cells into
GC B cells and stimulation of GC B cells into stimulated GC B cells
(denoted as B*) following Ag binding (Eq. 3a, 3b).

Nj þAgi →
sNgiQij

Bj þAgi ð3aÞ

Bj þAgi →
sBgiQij

Bp
j þAgi ð3bÞ

We modeled B cell proliferation as a first-order reaction (Eq. 4a), the
products of which were the original B cell and a single daughter B cell of
genotype k, which had, at most, one mutation from the parent genotype j.
The rate of this reaction was a function of the B cell replication rate (r) and
the probability of mutation from genotype j to genotype k (Rjk), which
itself is a function of the mutation rate (m) and is given by Rjk = (1 2 m)19

(m/3). Experimental studies suggested that B cell proliferation may have
doubling times as high as 6–7 h; we set the value of r based on a more
conservative doubling time of 8 h (55). Although in reality B cells con-
sume Ag during activation, in our model they did not. We made the
simplifying assumption that relative to nonspecific clearance processes in
the body (Eq. 8) and Ab-based clearance (Eq. 7a), the overall rate of Ag
clearance was not measurably affected by B cell consumption.

The Journal of Immunology 2075
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B cell differentiation was modeled as a symmetric process in which
stimulated B cells have an equal probability of differentiating into plasma and
memory cells at the rate of d (Eq. 4b, 4c). Based on this model, the prob-
ability of a given activated B cell to differentiate is constant, but the overall
rate of differentiation changes as the pool of activated GC B cells increases
or decreases in size. This simple one-step model of B cell differentiation was
necessary to efficiently model the B cell population at a repertoire level.

Bp
j →
rRjk

Bj þ Bk ð4aÞ

Bp
j →

d
Mj ð4bÞ

Bp
j →

d
Pj ð4cÞ

Bp
j �������!

maxðh; gBÞ
0 h ¼ r � ðB=kÞ ð4dÞ

Affinity maturation in the GC occurs under high apoptotic pressure that
drives the selection of higher-affinity BCRs. In this model, we applied
a carrying capacity approach to apoptosis, where the apoptosis rate h was
a function of the B cell replication rate (r) and the total GC B cell pop-
ulation (B) relative to the GC carrying capacity (k) shown in Eq. 4d. At
low GC B cell populations (B ,, k), the GC B cell decay rate reflects the
base B cell decay rate gB (half-life of 4.5 d). However, as the GC B cell
population reaches carrying capacity (B � k), the GC B cell decay rate
approaches the B cell replication rate (half-life of 8 h), halting further net
GC B cell population growth. This reflects the high apoptotic pressure
within the GC as the B cell population reaches carrying capacity, which is
limited by both physiological constraints, such as the physical space within
the GC, and biological constraints, such as the availability of T cell help.
This high rate of apoptosis provides a selection pressure that favors B cells
that are stimulated faster over those that are stimulated more slowly.

Plasma cells produce serum Abs (Eq. 5a) and decay at a rate (gP) based
on a half-life of 3 d (Eq. 5b). Memory cells act identically to naive B cells
(Eq. 6) but do not decay. Because the time scale of the simulation is from
days to weeks, we only modeled shorter-lifespan plasma cells descended
from either naive B cells or memory cells, which are thought to dominate
the acute Ab response and have half-lives of less than a week (19, 56, 57).
Similarly, memory cells, which are estimated to have lifespans of months
to years (58, 59), do not decay in the simulation.

Pj →
kAb

Pj þAbj ð5aÞ

Pj →
gP

0 ð5bÞ

Mj þAgi →
sMgiQij

Bj þ Agi ð6Þ

Abs produced by plasma cells bind to the Ag and clear it through
a second-order reaction (Eq. 7a), with a reaction rate that is a function of
the binding affinity between the Ab paratope j and the Ag epitope i (Qij), as
well as the clearance or neutralization parameter of epitope i (ri). This
neutralization parameter reflects the fact that different epitopes can have
different neutralization characteristics, including some epitopes that might
be entirely nonneutralizing. Abs decay with a rate gAb based on a half-life
of 10 d (Eq. 7b), which is an approximation within the range of serum IgG
Ab half-lives for mice (6–8 d) (60) and humans (7–21 d) (61).

Abj þAgi →
riQij

Abj ð7aÞ

Abj →
gAb

0 ð7bÞ

Finally, there is an intrinsic rate of Ag decay (gAg) due to nonspecific
clearance processes in the body (Eq. 8). For the purpose of this work, the
AMA1 Ag was assigned a half-life of 12 h. Although there is no mea-
sured value for the half-life for recombinant AMA1, this number is well
within a range of normal serum half-life values for a recombinant pro-
tein in the human body (62).

Agj →
gAg

0 ð8Þ

Simulation conditions

The simulation conditions were set up to reflect the vaccination strategy
used by Dutta et al. (47) for the tetravalent AMA1 vaccine. For the

monovalent vaccine, 360 Ag units was inserted into the system at days 1,
28, and 56. For the polyvalent vaccine, 90 units of each of the four Ags
were inserted into the system at the same intervals. Each Ag was repre-
sented as two epitopes: a conserved epitope, which had an antigenic dis-
tance of 0 between all serotypes, and a polymorphic epitope, which had an
antigenic distance of 4 between each serotype (see Results).

In this stochastic model, each simulation produced a unique trajectory
that represented the outcome of a single individual. We carried out 50 runs
for both monovalent and polyvalent vaccinations. Each simulation was run
out to 63 d, 1 wk following the final immunization, and lasted ∼10 min on
a desktop computer. We report the median values, as well as the overall
distribution of outcomes.

Simulated in vitro results

To compare the simulation results with experimental data, we used the
output from the simulations to predict experimental in vitro results for two
types of assays: Ab titer assays based on ELISA and serum-depletion and
-neutralization assays. In the simulated ELISA assay, the total Ab con-
centration that has nonzero binding to a specified target Ag is shown on a log
scale. We used a model non–vaccine strain, S5, as the heterologous Ag in the
simulated in vitro results. Strain S5 is a strain that was not found in the
monovalent (S1) or polyvalent (S1, S2, S3, and S4) vaccines and had
pairwise antigenic distances of 0 and 4 for epitopes 1 and 2, respectively, to
all other strains. An Ab or B cell is described as cross-reactive with respect
to two Ags if it has nonzero binding affinity to both Ags, as defined by Eq. 1.

The simulated neutralization and depletion assay was carried out in two
steps. First, the Abs that were specific for a given depleting Ag epitope k
(Abi, for which Qik . 0) are removed. Then, the neutralization capacity of
the remaining Abs to the target Ag epitope j was calculated as a function of
Ab concentration Abi, the neutralization rate of epitope j (rj), and binding
affinity Qij for all remaining Ab genotypes (Eq. 9).

S
n
i AbirjQij ð9Þ

During the depletion step, Abs specific to any of the epitopes in the
depleting Ag are removed. Neutralization is reported as a percentage of
neutralization relative to undepleted serum. This simplified model for
neutralization was used to represent the Ab response as a function of both
Ab titer and avidity.

Results
Overall immune system model

Fig. 1 provides a summary of the immune system model used in
this study to simulate affinity maturation. Briefly, Ag-specific
naive B cells (N) in the host B cell repertoire bind to Ag and
migrate to the GC and become GC B cells (B). Within the GC,
these B cells continue to bind Ag and become stimulated GC
B cells (B*). Stimulated GC B cells proliferate and mutate into
unstimulated daughter cells (B) and differentiate into mature
plasma (P) and memory (M) B cells. The GC B cell population is
under increasing apoptotic pressure as it approaches the GC car-
rying capacity. Plasma cells produce Abs that bind to the Ag,
leading to Ag clearance.
We designed this affinity-maturation model to be minimally

dependent on extensive fitting and parameterization. Table I defines
all major model parameters and their corresponding symbols used
in Materials and Methods. Many parameters, such as the B cell
replication rate of 8 h21, reflect standard established literature
values (63). Immunological shape space parameters, which define
the BCR and Ab–Ag interactions, were kept at the values defined
by Smith et al. (18). Likewise, B cell parameters (such as B cell
formation and decay rates) and mutation and differentiation prob-
abilities were set to values defined by Smith et al. (18, 19) or Celada
and Seiden (13). We adjusted the B cell stimulation rates to roughly
approximate affinity-maturation kinetics with respect to the number
and frequency of somatic mutations.
We created a simplified model of the polymorphic AMA1 Ag.

The polyvalent vaccine candidate tested by Dutta et al. was a
subunit-based vaccine that consisted of a mixture of recombinant
AMA1 proteins from four strains of P. falciparum (3D7, FVO,
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HB3, and W2mef) (47). In our model, each AMA1 Ag consisted
of two epitopes: a conserved epitope (epitope I) and a polymor-
phic epitope (epitope II). We modeled four strains of AMA1,
termed S1, S2, S3, and S4. The four strains shared an identical
epitope I, but each had a unique epitope II. In the immunological
shape space model, a paratope has maximum complementarity to

an epitope if the Hamming distance between their sequences is
#4. Likewise, a Hamming distance of 7 defines the maximum
distance with the minimum nonzero binding affinity.
We fitted two parameters for each epitope: immunogenicity and

antigenic distance, based on experimental data from monovalent
AMA1 vaccination. The immunogenicity of the conserved face
(g1) was set to 0.8 and that of the polymorphic face (g2) was set to
1.2, to reflect that ∼80% of the Ab response in a monovalent
AMA1 vaccination was toward epitopes on the polymorphic face.
We set pairwise antigenic distance values between each of the
four strains for each epitope. For the four conserved epitope I
sequences, this distance was set to 0, meaning that all four strains
had the same sequence for epitope I. For the four polymorphic
epitope II sequences, this distance was set to 4, meaning that all
four epitope II sequences differed from each other by a Hamming
distance of 4. We selected these antigenic distance values to reflect
∼100% cross-reactivity of Abs to the conserved face epitope and
∼20% cross-reactivity of Abs to the polymorphic face epitope
suggested in the monovalent vaccination results (47). In cases in
which experimental data from a vaccination study are unavailable,
the antigenic distance can be inferred from in vitro testing of se-
rum samples (31) or estimated from epitope sequence identity (64,
65). A third epitope-specific parameter, neutralization (r1 and r2),
was set to 1.0 for both epitopes to reflect experimental data, which
suggested that both epitopes have comparable neutralization
characteristics (47).

Affinity maturation kinetics

The affinity maturation model is stochastic, meaning that each
simulation represents a unique trajectory of a single vaccination
event. For each condition, we ran 50 simulations and present the
average results. Fig. 2 (upper panels) shows the overall output of
the monovalent vaccine simulation in terms of Ab and Ag levels,
B cell subpopulations, and Ab and BCR affinities. In Dutta et al.
(47), rabbits were immunized on days 0, 28, and 56 and sacrificed
on day 63 for serum analysis. The same vaccination schedule was
used in the simulation. Each subsequent boost led to an increase in
the Ag-specific Ab levels. Fig. 2A shows the underlying B cell
populations. On day 0, naive B cells were stimulated, leading to
a growing population of stimulated GC B cells, which slowly
differentiated into memory and plasma B cells. Subsequent boosts
were carried out well beyond the half-life of naive and GC B cells
(4.5 d) and were triggered primarily through stimulation of
memory B cells. These memory B cells re-entered the affinity
maturation process, eventually differentiating into mature memory
and plasma cell populations.
In the simulation, we explicitly modeled individual B cell clonal

lines, or genotypes. Fig. 2B illustrates the diversity of the B cell
population. Overall, for monovalent vaccination, ∼20 clonal lines
made up 25% of the B cell population, and ∼40 clonal lines made
up .50% of the B cell population, whereas the entire population
consisted of .330 clonal lines. This shows that, although the
overall response is highly diverse, there is significant enrichment
of ∼10% of the B cell clonal lines in the immune response.
Fig. 2C shows a breakdown of the B cell population in terms of
subpopulations by binding affinity to the Ag, from low affinity
(Hamming distance = 7) to maximum affinity (Hamming dis-
tance = 4). The results show that, over time and through subsequent
boost immunizations, higher-affinity B cells are significantly
enriched for. This enrichment of higher-affinity B cells is also
reflected in the Ab response (Fig. 2D): medium- and high-affinity
Abs begin to dominate the total Ab response by the third boost
immunization. Overall, Fig. 2 illustrates the various stages of af-
finity maturation modeled in this simulation: Ag presentation

FIGURE 1. Immune system model for affinity maturation. A summary

of the immune system model that is used to simulate affinity maturation,

including B cell stimulation, mutation and proliferation, differentiation, Ab

production, and Ag clearance. The components in the model include Ags,

naive B cells (N), GC B cells (B), stimulated GC B cells (B*), memory

cells (M), plasma cells (P), and Abs. Subscripts denote epitope and par-

atope genotypes.

Table I. Parameter values for the immune system model

Parameter Symbol Value

Simulation conditions
No. of naive B cells 5 3 107 cells
Ag dosea 360 units
GC carrying capacity k 5000 cells

Ag parameters
Serotypesa 1–4
Epitopes 2
Epitope 1

Immunogenicitya g 0.8
Clearancea r 1.0 3 10-4

Antigenic distancea 0
Epitope 2

Immunogenicitya g 1.2
Clearancea r 1.0 3 10-4

Antigenic distancea 4
Intrinsic decay gAg (12 h)21

B cell parameters
B cell enhancement factor εB 10
Ab enhancement factor εAb 2.5
Naive B cell formation rate kN (4.6 3 105 h)21

Naive B cell stimulation sN (1 d)21

GC B cell stimulation (base) sbase (8 h)21

GC B cell stimulation (maximum) smax (15 min)21

GC B cell replication rate r (8 h)21

Mutation probability m 0.10
Differentiation probability d 0.10
Memory cell stimulation sM (1 d)21

Ab production kAb 1.0
Naive B cell decay rate gN (4.5 d)21

GC B cell decay rate (base) gB (4.5 d)21

Plasma cell decay rate gP (3 d)21

Ab decay rate gAb (10 d)21

aAdjusted parameter.
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leads to stimulation, proliferation, mutation, and differentiation of
B cells, which leads to increased B cell diversity, enrichment of
higher-affinity B cells, and, finally, maturation of a high-affinity
Ab response.

Polyvalent vaccination

In the polyvalent vaccine simulation, immunization consisted of
90 units of each of four strains, instead of 360 units of a single strain,
to ensure that total Ag dose was held constant while Ag com-
position was altered. Fig. 2 (lower panels) shows the results of 50
simulations run under the polyvalent vaccine condition. Overall,
the results were very similar to the monovalent vaccine condition.
Subsequent boost immunizations led to higher Ab titers and higher
Ab affinities. Higher-affinity B cells made up a significant portion
of the GC B cell population by the second boost and dominated the
B cell population by the third boost. Similarly, following the third
boost, .50% of the Abs in the simulation consisted of high-
affinity Abs. There were marginally higher Ab titers and avid-
ities in the polyvalent vaccination case but no other significant
differences from the monovalent vaccination. Interestingly, poly-
valent vaccination led to a greater enrichment of B cell clonal
lines; ∼10 clonal lines made up 25% of the B cell population, and
30 clonal lines made up 50% of the population, despite the fact
that total B cell diversity was approximately the same as in the
monovalent case, with ∼330 genotypes represented in the entire
population.

Simulated in vitro experiments

The affinity maturation simulation yielded a profile of the Ab
response at day 63, 1 wk after the third immunization. We sought to
determine whether the polyvalent vaccine simulation successfully
predicted the specificity, cross-reactivity, and neutralization of the
Ab response in experimental data. Recall that only monovalent
vaccine experimental data were used to determine parameters for
the simulation. We compared our simulation results to the results of
two experimental assays carried out by Dutta et al. (47): indirect

ELISA, which measures the total amount of Ab that binds to
a given target Ag, and growth inhibition reversal assays (GIA re-
versal), which measure the amount of neutralization by an Ab

sample that is reversed following depletion using a depleting Ag.

The first assay measures the overall Ab response, whereas the

second assay quantifies the degree of cross-reactivity of that re-

sponse. When referring to prior experimental work by Dutta et al.

(47), monovalent vaccination refers to vaccination using 3D7

AMA1, and polyvalent vaccination refers to their tetravalent QV

AMA1 vaccine. Because the experimental data from Dutta et al.

(47) are derived from pooled sera (n = 3), we used average results

from the simulations for comparison. However, we present the SDs

of the simulation results to illustrate the variability in the simula-

tion data, which reflects the intersubject variability in the model.
Fig. 3A shows the simulated and experimental ELISAs to four

target Ags. The data are shown as a percentage of the total re-

sponse to the homologous strain (strain S1 in the simulation, strain

3D7 in the experimental data), defined as the strain used in the

monovalent vaccination. S5 represents a heterologous strain that is

not included among the four strains in the polyvalent vaccine. The

heterologous strain experimental results shown reflect the median

value for three heterologous strains 7G3, M24, and 102-1 from

Dutta et al. (47) POLY refers to a recombinant chimera of AMA1

that includes only the polymorphic face, whereas CONS refers to

a recombinant chimera that includes only the conserved face (47).
The simulation results show that the Ab titers to the heterologous

strain S5 were 50% of the titer to the homologous strain S1 for the

monovalent vaccine. In the polyvalent case, the titers to both strains

were the same. This was similar to the experimental data: the

polyvalent vaccine showed equal Ab titers to all four vaccine

strains, whereas the monovalent vaccine showed ∼40% of the

response to heterologous strains. The simulated ELISA results

using the POLY and CONS chimera revealed that 80% of the Ab

response in the monovalent vaccination was directed toward the

polymorphic face, and 20% was directed to the conserved face,

FIGURE 2. Affinity maturation simulation results for 50 independent trajectories for monovalent (upper panel) and polyvalent (lower panel) vaccinations.

Median values are shown for each panel. (A) B cell populations, including GC B cells, stimulated GC B cells, memory cells, and plasma cells. (B) B cell

diversity, with the number of unique genotypes that make up 25, 50, 75, and 100% of the total B cell population. B cell populations (C) and Ab levels (D) with

respect to affinity to the Ag strain S1 for different levels of affinity, from low affinity (Hamming distance = 7) to high affinity (Hamming distance = 4).
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whereas the polyvalent vaccine showed ∼50% response to each

face. This also agrees well with the prior experimental data, which
showed that the monovalent 3D7 vaccine showed a significantly
higher response to the polymorphic face than to the conserved
face (50% versus 20%), whereas the polyvalent QV vaccine
showed an approximately equal response to both faces (40%
versus 50%). One difference in the experimental data lies in the
relative response of the monovalent vaccine to the polymorphic
face: 80% in the simulation compared with 50% in the experi-
ment. Interestingly, in the experimental data, the monovalent re-
sponse to the POLYand CONS chimeras do not add up to the total
response to AMA1, indicating that this discrepancy might be
a limitation of the two-epitope model used in the simulation.
Overall, these results show that the simulation successfully reca-
pitulated the trends observed in the experimental data with respect
to the overall Ab response for both homologous versus heterolo-
gous strains, as well as to the polymorphic versus conserved face.
Fig. 3B shows the simulated and experimental GIA reversal

assay results using the same four Ags described above (S1, S2,
POLY, and CONS), as depleting Ags. In this assay, one of the four
Ags was used to deplete the serum, followed by testing for neu-
tralization using the S1 strain. As expected, in both the simulation
results and the experimental data, depletion using the homologous
Ag (S1 for simulation, 3D7 for experimental) resulted in complete
reversal of inhibition. In the simulation results, depletion using the
heterologous S5 strain resulted in only a 60% reversal of inhibi-
tion for the monovalent response and a 95% reversal for the
polyvalent response, indicating that the polyvalent response is
highly cross-reactive and that the same Abs that bind to the het-
erologous Ag bind to the homologous Ag. These results agree with
the prior experimental work, in which depletion with a heterolo-
gous Ag resulted in an average 50% reversal of inhibition in the
monovalent responses and an average 80% reversal in the poly-
valent QV vaccine. In the simulation results, depletion using
POLYand CONS resulted in a 90 and 10% reversal of inhibition in
the monovalent response, respectively, compared with a 40 and
60% reversal in the polyvalent response. These results agree to
some degree with experimental work by Dutta et al. (47), which
showed that POLY and CONS depletions led to 70 and 15% re-
versal in the monovalent response and 60 and 40% reversal in the

polyvalent response. The lack of quantitative agreement may re-
flect the limitations of modeling a complex phenomenon like Ab-
dependent inhibition in an in vitro growth assay using simple
characteristics, such as Ab titer, binding affinity, and specificity.
Overall, however, the simulation results reproduced the experi-
mental finding that the polyvalent response is highly cross-reactive
and well-balanced between both the polymorphic and conserved
face, whereas the monovalent vaccine was largely strain specific
and biased toward the polymorphic face.
Both our simulation results and prior experimental work iden-

tified three key outcomes. First, the polyvalent response had equal
neutralization to homologous and heterologous/non–vaccine
strains, whereas the monovalent response had ∼50% neutralization
to heterologous strains. Second, the polyvalent vaccination showed
an ∼2-fold increase in the Ab response toward the conserved face.
Third, polymorphic face Abs were responsible for at least half of
the neutralization of the polyvalent response. These results present
a conundrum: if conserved face Abs represent only 40% of the
polyvalent response, and polymorphic face Abs contribute a sig-
nificant portion of the neutralization, how does the polyvalent Ab
response achieve 80–100% neutralization of heterologous non-
vaccine strains? To address this issue, we analyzed the fine spec-
ificity of the polyclonal Ab response modeled in the simulation.

Ab fine specificity

In this affinity maturation model, B cells and Abs were represented
at the genotype level, enabling us to analyze both the fine spec-
ificity of the Ab response with respect to each epitope and the
degree of cross-reactivity to heterologous strains. Fig. 4A shows
the overall Ab response for both the monovalent and polyvalent
vaccine simulations. As was seen earlier, subsequent boosts
resulted in increased Ag-specific Ab levels. We used the end point
values for the Ab response at day 63 to determine the Ab titer
results in Fig. 3A, which showed that the monovalent response
was largely biased toward the conserved face epitope, whereas the
polyvalent response was evenly balanced between the conserved
and polymorphic epitopes. Fig. 4A shows that, through subsequent
boosts, the relative Ab response to the polymorphic face increased
in both the monovalent and polyvalent vaccine simulations. This
was especially striking in the polyvalent case: the polymorphic

FIGURE 3. Simulated in vitro results compared with

prior experimental data. (A) The median Ab titers from

the monovalent and polyvalent simulations are reported

for the homologous (strain S1) and heterologous (strain

S5) Ags, as well as a model chimera containing only the

polymorphic (POLY) or conserved (CONS) epitope.

Experimental results for monovalent (3D7) and polyva-

lent (QV) vaccination against homologous (strain 3D7)

and heterologous (strains 7G3, M24, and 102-1) Ags, as

well as recombinant POLY and CONS AMA1 chimeras.

(B) Median simulated GIA reversal and experimental

GIA reversal assays for the same Ags as above used for

depletions. SDs are given for the simulated results; all

experimental data are from Dutta et al. (47) and are

derived from pooled serum samples. All differences in

the simulation results between monovalent and polyva-

lent vaccinations were significant based on a Welch t test

(p , 1025).
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face response was 20% of the total strain S1-specific response after
the first immunization and 55% of the response after the third.
Next, we assessed the degree of cross-reactivity of the simulated

Ab response. In Fig. 4B, the Ab response is broken down by both

epitope and the degree of cross-reactivity from cross-reactive to
all four strains, cross-reactive to more than one strain but not all

four, and specific to only one strain. For the monovalent vaccine

simulation, 32% of the Ab response was fully cross-reactive, and

35% was strain-specific, whereas in the polyvalent vaccine sim-

ulation 67% of the response was fully cross-reactive, and 11% was
strain specific. In addition to the shift previously observed for the

polyvalent vaccine—that there was an ∼2-fold enhancement of the

conserved-face Ab response—a second, related shift was present.

In the monovalent vaccine simulation, 19% of the polymorphic-
face Ab response was fully cross-reactive, and 42% was strain

specific. By contrast, in the polyvalent vaccine simulation, 39% of

this response was fully cross-reactive, whereas 21% was strain

specific. Finally, the epitope-level cross-reactivity of the response

varied with time, and subsequent immunization boosts led to an
increase in the proportion of the polymorphic-face response that

was partially or fully cross-reactive. Interestingly, the overall

proportion of the Ab response that was fully cross-reactive seemed

to be largely constant, at ∼30% in the monovalent simulation and

∼70% in the polyvalent simulation.
These results show that, despite the same overall Ag dose, there

was a substantial shift in the fine specificity and cross-reactivity

of the Ab response during polyvalent vaccination. This was re-

flected in an enhancement of the conserved face Abs, as well as

the cross-reactive polymorphic face Abs. This shift suggests that
the polymorphic face Ab response was qualitatively different in the

polyvalent vaccine than in the monovalent vaccine and provides

a possible explanation for the broad neutralization observed in the

polyvalent response. Furthermore, it suggests that a large per-

centage of the Abs in the polyvalent response (.66%) was truly
strain transcending.

Number of strains and strain dilution

The simulations presented in this article demonstrate that a poly-
valent vaccine consisting of four strains showed an apparent en-
hancement of cross-reactive Abs toward both the conserved and
polymorphic faces of AMA1. This was most clearly reflected in the
high Ab titers to non–vaccine heterologous strains. We ran the
polyvalent simulation again, this time including two (bivalent) and
three (trivalent) strains instead of four, to explore how this en-
hancement effect is related to the number of strains used in the
polyvalent vaccine. In Fig. 5A, we show the Ab titers of each of
these polyvalent vaccines to a heterologous non–vaccine strain, in
which the polymorphic epitope had an antigenic distance of 4.
The results show that there was substantial enhancement of the

heterologous response in the bivalent and trivalent conditions com-
pared with the monovalent condition. Overall, the bivalent and tri-
valent formulations resulted in an ∼60 and ∼80% increase,
respectively, in Ab titers against a non–vaccine strain relative
to the monovalent formulation compared with an ∼100% increase
for the tetravalent formulation. Furthermore, the degree of variation
in the titers of the monovalent and bivalent simulations was much
higher than in the trivalent and tetravalent simulations. These find-
ings agree with the experimental results of Dutta et al. (47), which
show, for a variety of inhibition assays and heterologous strains, that
the trivalent vaccine performs almost as well as the tetravalent
vaccine, whereas the bivalent vaccine performs measurably worse.
We next analyzed the fine specificity and cross-reactivity of the

Ab response for all four vaccination conditions. In Fig. 5B, the Ab
titers to each epitope are plotted, along with their cross-reactivity.
The results show two trends as the number of strains in the vaccine
increased: the percentage of the Ab response directed toward the
conserved face increased, in a largely linear fashion, and the
percentage of the polymorphic face Ab response that was fully
cross-reactive increased, reaching a maximum of ∼40% of the
total polymorphic face response in the trivalent and tetravalent
conditions. These results highlight the strain-dilution effect ob-

FIGURE 4. Fine specificity and cross-reactivity

of the Ab response. (A) The Ab response toward the

conserved (Ep 1) and polymorphic (Ep 2) epitopes

for strain S1 in the monovalent and polyvalent

vaccine simulations. (B) The Ab response is further

broken down with respect to reactivity across

multiple Ag alleles: fully cross-reactive (cross),

partially cross-reactive (partial), and strain-specific

(spec) for both epitopes.
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served in this work: the introduction of additional strains diluted
the relative response of strain-specific Abs and enhanced the re-
sponse of partial and fully cross-reactive Abs to both polymorphic
and conserved face epitopes. We next sought to identify the
mechanism for this strain-dilution effect by analyzing the B cell
response underlying the Ab response in the simulation.

B cell specificity in a polyvalent vaccine

Like Abs, B cell genotypes are explicitly modeled in our simu-
lation. Fig. 6A shows the profile of the B cell population 1 wk after
the third immunization. As expected, the B cell population largely
reflects the Ab response with respect to both epitope specificity
and cross-reactivity. We found that 21% of the B cell population
in the monovalent simulation was specific to the conserved face
epitope compared with 44% in the polyvalent simulation, and
a total of 39% of the B cell population was fully cross-reactive in
the monovalent simulation compared with 70% in the polyvalent
simulation. By contrast, the monovalent B cell response was 28%
strain specific, whereas the polyvalent response was only 11%
strain specific.
Recent studies using high-throughput sequencing of B cell

repertoires were able to determine phylogenetic maps of the
B cell population that provided the first detailed glimpses of
a polyclonal B cell population’s makeup (66, 67). We provide
a similar analysis of our simulated B cell repertoires with a phy-
logenetic tree for 35 clonal lines with the largest populations,
from a representative case for a monovalent and polyvalent
vaccination simulation (Fig. 6B). The phylogenetic trees of these
high-frequency B cell clones reflect the overall B cell population
results in Fig. 6A. B cell clones from the polyvalent simulation
were much more likely to be specific to the conserved face or
specific to the polymorphic face and cross-reactive. These results
show that, in the polyvalent simulation, the broadly neutralizing
cross-reactive Ab response resulted from a highly cross-reactive
B cell response.
To determine the underlying mechanisms for the enhancement

of this cross-reactive B cell response in the polyvalent simulation,
we analyzed the dynamics of the B cell population with respect to
epitope specificity and cross-reactivity. Fig. 7A shows a profile
of the B cell response as a function of time in monovalent and
polyvalent simulations. As was seen in the Ab response, subse-
quent boost immunizations led to an increased B cell response.
Furthermore, it is clear that, even at a very early stage, the
polyvalent simulation had much higher levels of cross-reactive
B cells. Fig. 7B plots the growth rate of the B cell populations
with respect to their epitope specificity and their cross-reactivity.
These results show that cross-reactive B cells grew at a signifi-
cantly higher rate (approximately 2–3-fold) than did the strain-
specific B cells in the polyvalent simulation but not in the
monovalent simulation.

B cells not only bind to Ag, they bind to a particular epitope on
the Ag. As a result, the overall Ag dose does not necessarily reflect
the apparent Ag dose for a given B cell line. This apparent Ag dose
is a reflection of the total number of epitopes in the system for
which that B cell is specific. Although the overall Ag dose was the
same in both the monovalent and polyvalent cases, the relative
abundance of each epitope in the system varied between the two. In
the monovalent case, cross-reactive, partially cross-reactive, and
strain-specific B cell lines were exposed to the same apparent Ag
dose (Fig. 7B). However, in the polyvalent case, B cell lines that
were cross-reactive to all four strains were exposed to an apparent
Ag dose that was four times higher than the dose to which the
strain-specific B cell lines were exposed. This apparent Ag dose
was the key mechanism underlying the strain dilution effect seen
in the polyvalent vaccine simulation. As the number of strains in
the polyvalent vaccine increased, the selective advantage of cross-
reactive B cells over strain-specific B cells increased, because the
relative Ag dose for cross-reactive B cells increased. By contrast,
in a monovalent vaccine, cross-reactive B cells had no selective
advantage over strain-specific B cells because both were exposed
to the same apparent Ag dose.
The selective advantage of cross-reactive B cells in affinity

maturation during a polyvalent vaccination can most clearly be
represented as a “fitness landscape” (Fig. 8), which plots the fit-
ness of a B cell line as a function of two attributes: its binding
affinity and its cross-reactivity. “Fitness” refers to the proliferation
rate of a B cell line (based on Eqs. 5 and 6 in the simulation), with
a value of 1 indicating maximum proliferation. As is the case in
classical affinity maturation models, B cells with higher binding
affinities show higher fitness, which is a reflection of the faster
stimulation and proliferation rates; as affinity increases from low
to max, B cell fitness increases monotonically in both monovalent
and polyvalent conditions. Because our model explicitly included
multiple Ag strains, we can analyze the fitness landscape with
regard to cross-reactivity. We showed earlier that, in monovalent
conditions, B cells were exposed to the same apparent Ag dose
regardless of cross-reactivity, whereas in the polyvalent case,
cross-reactive B cells were exposed to higher apparent Ag levels
(Fig. 7C). We see those effects on B cell fitness. In the monovalent
case, B cells had the same fitness regardless of cross-reactivity,
whereas in the polyvalent case, a B cell’s fitness increases as the
number of strains to which it is reactive increases. In monovalent
simulations, the fitness peak corresponded to all high-affinity
B cells, whereas in polyvalent simulations, the fitness peak cor-
responded to fully cross-reactive, high-affinity B cells. These fit-
ness landscapes guide the evolutionary behavior of B cells during
affinity maturation, suggesting that, in polyvalent vaccination,
B cell lines that are initially more cross-reactive are favored over
those that are not and that mutations during affinity maturation
that increase cross-reactivity are favored as well.

FIGURE 5. Monovalent, bivalent, trivalent, and

tetravalent vaccine responses. (A) The Ab response

toward a heterologous, non–vaccine strain is shown

from simulations of monovalent, bivalent, trivalent,

and tetravalent vaccinations. (B) The cross-reactive,

partially cross-reactive, and strain-specific Ab re-

sponse to the conserved (Ep 1) and polymorphic

(Ep 2) epitopes is shown for monovalent, bivalent,

trivalent, and quadvalent vaccine conditions.
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Discussion
In this study, we sought to apply a first-principles approach to
simulating the progression of B cell affinity maturation to predict
the fine specificity of an Ab response in the case of a real-world
polyvalent vaccine candidate. We combined the theoretical
model of immunological shape space, developed by Smith et al.
(18) to describe BCR and Ab interactions, with Ags, using the
stochastic approach to immune system dynamics developed by
Woo and Reifman (26) to model B cell population dynamics
during affinity maturation. The model was designed to have
a minimal amount of adjustable parameters: the Ag dose, the
number of Ag strains, the number of epitopes/Ag, the immuno-
genicity of each epitope, and the antigenic distance between each
epitope among the different strains. To our knowledge, this work
represents the first computational simulation of affinity maturation
that incorporates both multiple strains and multiple epitopes,
which are key requirements to modeling a polyvalent immune
response. We applied this approach to study the immune response
to the polyvalent AMA1 Ag and used the simulation results to
recapitulate experimentally verifiable characteristics of the im-
mune response in terms of specificity and cross-reactivity.

Our theoretical results provide a mechanistic explanation for the
experimental studies carried out by Dutta et al. (47) and other
investigators (48) that directly compared monovalent and poly-
valent vaccine Ab responses. We show qualitative, and sometimes
quantitative, agreement with the Ab titers and efficacies in the
monovalent and polyvalent conditions, as well as in the depletion
studies that determined the degree to which the responses are
strain specific and cross-reactive. We also show good agreement
with their findings on the relative response to conserved and
polymorphic face epitopes, as well as the degree to which the
enhancement of cross-reactivity is observed in bivalent, trivalent,
and tetravalent formulations. Overall, with minimal parameteri-
zation, we reproduced a number of the trends observed in prior
experimental studies with respect to fine specificity, cross-
reactivity, and efficacy.
We successfully recapitulated the experimental observations that

the polyvalent AMA1 vaccine enhances the immunogenicity of
cross-reactive epitopes (47). In our simulations, this cross-reactive
response in polyvalent vaccination is a result of an enhanced re-
sponse to conserved face epitopes, as well as greater cross-
reactivity to polymorphic face epitopes. Furthermore, our model

FIGURE 6. Memory B cell response.

(A) A breakdown of the memory B cell

response in terms of specificity for the

conserved (Ep 1) and polymorphic (Ep

2) epitopes in the monovalent (left) and

polyvalent (right) vaccine simulations.

(B) A sequence phylogeny tree of the 35

largest B cell clonal populations, which

represent ∼30–40% of the total B cell

population, colored with respect to epi-

tope and cross-reactivity in the same

scheme as in (A). The font size reflects

the relative population size of that clonal

line.
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suggests that this cross-reactivity is largely (but not entirely)
a result of strain-transcending Abs to both conserved and poly-
morphic face epitopes. Although further experimental studies are
needed to confirm this hypothesis, several findings from previous
studies (46–49), such as a largely balanced response across vaccine
strains, comparable efficacy to non–vaccine strains, similar results
following heterologous depletion, and increased cross-reactivity
relative to pooled monovalent sera, are all consistent with the
theory that the broadly neutralizing activity of the polyvalent
vaccine is largely a result of strain-transcending Abs.
Our model attributes the mechanism underlying the enhanced

cross-reactivity in the polyvalent response to a strain dilution effect,
in which the introduction of additional polymorphic strains results
in an increased selection of cross-reactive B cells over strain-
specific B cells during affinity maturation. This effect occurs be-
cause, as the number of strains in the polyvalent vaccine increases,
the apparent Ag dose available for cross-reactive B cells increases
relative to the Ag dose for strain-specific B cells. This increase
results in a selective pressure that favors increasing binding affinity
(as is the case in classical models of affinity maturation), as well as
increasing cross-reactivity. The effects of this selective pressure can

be described as follows: in the GC environment in which B cells
must compete with each other for survival and proliferation, the
B cells that are specific to more Ags have higher growth rates and
dominate the population. In a polyvalent vaccine, as the number of
strains increases, the selective advantage of cross-reactive B cells
increases, resulting in an increasingly cross-reactive Ab response.
There is a subtle difference between our proposed mechanism,

which is based on B cell selective fitness, and the “epitope-dilu-
tion” concept proposed by Dutta et al. (47). As would be predicted
by epitope dilution, our simulations show an enhanced response to
the conserved epitope, but they also show an enhanced cross-
reactivity to the polymorphic epitope. Because of the degener-
acy of BCR-epitope binding, many distinct B cell clonotypes can
bind to the same epitope, and not all clonotypes that bind to the
polymorphic epitope are the same. Those that happen to be able to
bind to more than one strain have a selective advantage over those
that do not in the polyvalent vaccine, regardless of the overall
“dilution” of the polymorphic epitope, compared with the con-
served epitope. The distinction between our mechanism and that
proposed by Dutta et al. (47) is subtle, but significant; it suggests
that broadly conserved epitopes need not be a prerequisite for

FIGURE 7. B cell cross-reactivity and prolifer-

ation rate. (A) The number of B cells with fully

cross-reactive, partially cross-reactive, and strain-

specific Ag specificity for monovalent (left panel)

and polyvalent (right panel) vaccination conditions.

(B) The growth rate of B cell populations (dB/dT)

corresponding to cross-reactive, partially cross-re-

active, and strain-specific B cells for monovalent

(left panel) and polyvalent (right panel) conditions.

(C) Epitope dose for fully conserved (Cross), par-

tially conserved (Partial), and strain-specific (Spec)

epitopes in monovalent (left panel) and polyvalent

(right panel) vaccine formulations. Total Ag dose

was 360 units.
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enhanced cross-reactivity in the polyvalent vaccine and that even
disparate strain-specific epitopes may induce increased cross-
reactivity in polyvalent vaccines.
AMA1 is a leading candidate for a subunit-based malaria vac-

cine; however, the high degree of polymorphic variation in this Ag
among different strains of P. falciparum has been a major im-
pediment to efficacy in both preclinical and clinical testing.
Researchers have explored two approaches to tackle the issue of
antigenic variation in AMA1: polyvalent formulations using
multiple strains of AMA1 (47, 48) and chimeric variants of AMA1
(51, 68), which incorporate a subset of high-frequency poly-
morphisms into a small set of constructs. In both cases, allelic
coverage is the guiding principle, meaning that the vaccine should
incorporate as broad a range of polymorphic variation as is pos-
sible (43). The results of this theoretical study, along with the
experimental results of Dutta et al. (47), present an alternate ap-
proach: to directly enhance the cross-reactivity of the Ab response
through the use of a polyvalent formulation that biases affinity
maturation toward shared or cross-reactive epitopes. The compu-
tational work presented in this article provides a theoretical basis
for experimental findings observed in a number of polyvalent
AMA1 vaccine studies: a polyvalent AMA1 vaccine is capable of
inducing a robust cross-reactive Ab response despite limited al-
lelic coverage.
There are a number of future experiments that could validate

this mechanism for enhanced cross-reactivity. First, ELISAs on
sufficiently large panels of mAbs derived from hybridized B cells
from rabbits immunized with the monovalent and polyvalent
vaccines against the POLYor CONS recombinant chimeras, as well
as recombinant non–vaccine AMA1 strains, could directly mea-
sure whether the polyvalent response shows enhanced cross-
reactivity on both the conserved and polymorphic face and
whether that response is truly strain transcending. Second, serum-
depletion and -neutralization assays could assess the degree to
which the polymorphic face response in the polyvalent vaccine is
systematically different from the polymorphic face response in the
monovalent vaccine with respect to cross-reactivity. Third, serial
vaccinations first with the polyvalent vaccine, followed by the
monovalent vaccine, should show an immune response that remains
highly cross-reactive.
Our findings have implications for polyvalent vaccine research,

as well as general vaccine design. First, a number of studies use

DNA vaccines, virus-like particles, nanoparticles, or protein
scaffold–based approaches to engineer Ags that isolate and pres-
ent a conserved and/or neutralizing epitope. Our results suggest
a novel alternative, not unlike heterologous priming (69), by using
a heterogeneous mixture in which the targeted epitope is shared
among otherwise diverse Ags. Second, our findings suggest that an
enhanced cross-reactive Ab response may be a universal feature of
polyvalent vaccines in cases in which the component Ags contain
shared epitopes. Although polyvalent vaccines are used to ac-
commodate Ag diversity, our results suggest, somewhat counter-
intuitively, that the broadening effect of some polyvalent vaccines
may not come from pooled strain-specific responses toward the
polymorphic epitopes but, instead, from an enhanced cross-
reactive response toward shared epitopes. In some cases, these
polymorphic regions are thought to arise from positive immune-
selective pressure, where mutations within neutralizing epitopes
confer a selective advantage, whereas conserved regions may be
indicative of nonneutralizing or subneutralizing epitopes. In such
cases, a polyvalent vaccine may enhance immunogenicity of
conserved, nonneutralizing epitopes at the expense of polymor-
phic neutralizing epitopes.
In the case of AMA1, both conserved and polymorphic epitopes

are known to be neutralizing, and the polyvalent AMA1 vaccine
shows robust efficacy against a wide range of P. falciparum strains
(47). With other Ags this may not be the case. For example, in
dengue virus, subneutralizing cross-reactive Abs and cross-
reactive memory B cells are thought to play a major pathogenic
role in dengue hemorrhagic fever during secondary infections
(70–72). Our findings suggest that polyvalent vaccines may
be a double-edged sword: effective in cases in which there are
no shared epitopes or if conserved epitopes are neutralizing
and detrimental in cases in which conserved epitopes are pres-
ent, but polymorphic or strain-specific epitopes are critical for
neutralization.
We developed this stochastic model of B cell affinity maturation

to serve as a platform from which to carry out theoretical and
experimental studies of the Ab response to complex multiepitope
Ags. We are currently exploring a number of directions in which
to extend this model, such as the incorporation of T cells and cell-
mediated immunity, as well as the simulation of viral kinetics and
pathogenesis. We hope that the work presented in this article
highlights the potential for theoretical biology to investigate the

FIGURE 8. B cell fitness landscape during affinity maturation. The fitness landscape for B cells during affinity maturation in the monovalent (left panel)

and polyvalent (right panel) simulations, as a function of cross-reactivity and binding affinity. A fitness of 1 represents the highest fitness; cross-reactivity is

listed as the number of strains that the B cell line is specific to, and the binding affinity is shown as low, medium, high, and max, corresponding to Hamming

distances of 4, 5, 6, and 7.
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mechanisms underlying experimental observations in immu-
nology, and we will continue to explore the application of com-
putational methods in advancing our understanding of basic
immunological principles.

Acknowledgments
We thank Dr. Sheetij Dutta and Dr. J. David Haynes (Walter Reed Army

Institute of Research, Silver Spring, MD) for invaluable discussions about

AMA1 and Dr. Hyung Jun Woo (Department of Defense Biotechnology

High Performance Computing Software Applications Institute) for contri-

butions in developing the stochastic simulation method.

Disclosures
The authors have no financial conflicts of interest.

References
1. Jardine, J., J. P. Julien, S. Menis, T. Ota, O. Kalyuzhniy, A. McGuire, D. Sok,

P. S. Huang, S. MacPherson, M. Jones, et al. 2013. Rational HIV immunogen
design to target specific germline B cell receptors. Science 340: 711–716.

2. Correia, B. E., Y. E. Ban, M. A. Holmes, H. Xu, K. Ellingson, Z. Kraft,
C. Carrico, E. Boni, D. N. Sather, C. Zenobia, et al. 2010. Computational design
of epitope-scaffolds allows induction of antibodies specific for a poorly immu-
nogenic HIV vaccine epitope. Structure 18: 1116–1126.

3. McLellan, J. S., B. E. Correia, M. Chen, Y. Yang, B. S. Graham, W. R. Schief,
and P. D. Kwong. 2011. Design and characterization of epitope-scaffold
immunogens that present the motavizumab epitope from respiratory syncytial
virus. J. Mol. Biol. 409: 853–866.

4. Klinman, N. R. 1976. The acquisition of b-cell competence and diversity. Am. J.
Pathol. 85: 693–704.

5. K€uppers, R., M. Zhao, M. L. Hansmann, and K. Rajewsky. 1993. Tracing B cell
development in human germinal centres by molecular analysis of single cells
picked from histological sections. EMBO J. 12: 4955–4967.

6. Bell, G. I. 1970. Mathematical model of clonal selection and antibody produc-
tion. J. Theor. Biol. 29: 191–232.

7. Bell, G. I. 1970. Mathematical model of clonal selection and antibody produc-
tion. Nature 228: 739–744.

8. Bell, G. I. 1971. Mathematical model of clonal selection and antibody produc-
tion. II. J. Theor. Biol. 33: 339–378.

9. Oprea, M., and A. S. Perelson. 1997. Somatic mutation leads to efficient affinity
maturation when centrocytes recycle back to centroblasts. J. Immunol. 158:
5155–5162.

10. Kepler, T. B., and A. S. Perelson. 1993. Somatic hypermutation in B cells: an
optimal control treatment. J. Theor. Biol. 164: 37–64.

11. Kepler, T. B., and A. S. Perelson. 1993. Cyclic re-entry of germinal center
B cells and the efficiency of affinity maturation. Immunol. Today 14: 412–415.

12. Seiden, P. E., and F. Celada. 1992. A model for simulating cognate recognition
and response in the immune system. J. Theor. Biol. 158: 329–357.

13. Celada, F., and P. E. Seiden. 1996. Affinity maturation and hypermutation in
a simulation of the humoral immune response. Eur. J. Immunol. 26: 1350–1358.

14. Meyer-Hermann, M. 2002. A mathematical model for the germinal center
morphology and affinity maturation. J. Theor. Biol. 216: 273–300.

15. Meyer-Hermann, M., A. Deutsch, and M. Or-Guil. 2001. Recycling probability and
dynamical properties of germinal center reactions. J. Theor. Biol. 210: 265–285.

16. Farmer, J. D., N. H. Packard, and A. S. Perelson. 1986. The immune system,
adaptation, and machine learning. Physica D 22: 187–204.

17. Perelson, A. S., and G. F. Oster. 1979. Theoretical studies of clonal selection:
minimal antibody repertoire size and reliability of self-non-self discrimination. J.
Theor. Biol. 81: 645–670.

18. Smith, D. J., S. Forrest, R. R. Hightower, and A. S. Perelson. 1997. Deriving
shape space parameters from immunological data. J. Theor. Biol. 189: 141–150.

19. Smith, D. J., S. Forrest, D. H. Ackley, and A. S. Perelson. 1999. Variable efficacy of
repeated annual influenza vaccination. Proc. Natl. Acad. Sci. USA 96: 14001–14006.

20. Henrickson, S. E., T. R. Mempel, I. B. Mazo, B. Liu, M. N. Artyomov, H. Zheng,
A. Peixoto, M. P. Flynn, B. Senman, T. Junt, et al. 2008. T cell sensing of antigen
dose governs interactive behavior with dendritic cells and sets a threshold for
T cell activation. Nat. Immunol. 9: 282–291.

21. Zheng, H., B. Jin, S. E. Henrickson, A. S. Perelson, U. H. von Andrian, and
A. K. Chakraborty. 2008. How antigen quantity and quality determine T-cell
decisions in lymphoid tissue. Mol. Cell. Biol. 28: 4040–4051.

22. Kosmrlj, A., A. K. Jha, E. S. Huseby, M. Kardar, and A. K. Chakraborty. 2008.
How the thymus designs antigen-specific and self-tolerant T cell receptor
sequences. Proc. Natl. Acad. Sci. USA 105: 16671–16676.

23. Lee, H. Y., D. J. Topham, S. Y. Park, J. Hollenbaugh, J. Treanor, T. R. Mosmann,
X. Jin, B. M. Ward, H. Miao, J. Holden-Wiltse, et al. 2009. Simulation and
prediction of the adaptive immune response to influenza A virus infection. J.
Virol. 83: 7151–7165.

24. Cheng, Y., D. Ghersi, C. Calcagno, L. K. Selin, R. Puzone, and F. Celada. 2009.
A discrete computer model of the immune system reveals competitive inter-
actions between the humoral and cellular branch and between cross-reacting
memory and naı̈ve responses. Vaccine 27: 833–845.

25. Hancioglu, B., D. Swigon, and G. Clermont. 2007. A dynamical model of human
immune response to influenza A virus infection. J. Theor. Biol. 246: 70–86.

26. Woo, H. J., and J. Reifman. 2012. A quantitative quasispecies theory-based
model of virus escape mutation under immune selection. Proc. Natl. Acad.
Sci. USA 109: 12980–12985.

27. van Deutekom, H. W., G. Wijnker, and R. J. de Boer. 2013. The rate of immune
escape vanishes when multiple immune responses control an HIV infection. J.
Immunol. 191: 3277–3286.

28. Nagaraja, S., A. Wallqvist, J. Reifman, and A. Y. Mitrophanov. 2014. Compu-
tational approach to characterize causative factors and molecular indicators of
chronic wound inflammation. J. Immunol. 192: 1824–1834.

29. Gillespie, D. T. 1977. Exact stochastic simulation of coupled chemical reactions.
J. Phys. Chem. 81: 2340–2361.

30. Huang, J. W., and J. M. Yang. 2011. Changed epitopes drive the antigenic drift
for influenza A (H3N2) viruses. BMC Bioinformatics 12(Suppl. 1): S31.

31. Smith, D. J., A. S. Lapedes, J. C. de Jong, T. M. Bestebroer, G. F. Rimmelzwaan,
A. D. Osterhaus, and R. A. Fouchier. 2004. Mapping the antigenic and genetic
evolution of influenza virus. Science 305: 371–376.

32. Crawford, H., P. C. Matthews, M. Schaefer, J. M. Carlson, A. Leslie,
W. Kilembe, S. Allen, T. Ndung’u, D. Heckerman, E. Hunter, and P. J. Goulder.
2011. The hypervariable HIV-1 capsid protein residues comprise HLA-driven
CD8+ T-cell escape mutations and covarying HLA-independent polymorphisms.
J. Virol. 85: 1384–1390.

33. Fischer, W., V. V. Ganusov, E. E. Giorgi, P. T. Hraber, B. F. Keele, T. Leitner,
C. S. Han, C. D. Gleasner, L. Green, C. C. Lo, et al. 2010. Transmission of single
HIV-1 genomes and dynamics of early immune escape revealed by ultra-deep
sequencing. PLoS ONE 5: e12303.

34. van Gils, M. J., E. M. Bunnik, J. A. Burger, Y. Jacob, B. Schweighardt, T. Wrin,
and H. Schuitemaker. 2010. Rapid escape from preserved cross-reactive neu-
tralizing humoral immunity without loss of viral fitness in HIV-1-infected pro-
gressors and long-term nonprogressors. J. Virol. 84: 3576–3585.

35. Dowd, K. A., D. M. Netski, X. H. Wang, A. L. Cox, and S. C. Ray. 2009. Se-
lection pressure from neutralizing antibodies drives sequence evolution during
acute infection with hepatitis C virus. Gastroenterology 136: 2377–2386.

36. Cento, V., C. Mirabelli, S. Dimonte, R. Salpini, Y. Han, P. Trimoulet, A. Bertoli,
V. Micheli, G. Gubertini, G. Cappiello, et al. 2013. Overlapping structure of
hepatitis B virus (HBV) genome and immune selection pressure are critical
forces modulating HBV evolution. J. Gen. Virol. 94: 143–149.

37. Remarque, E. J., B. W. Faber, C. H. Kocken, and A. W. Thomas. 2008. Apical
membrane antigen 1: a malaria vaccine candidate in review. Trends Parasitol. 24:
74–84.

38. Coley, A. M., K. Parisi, R. Masciantonio, J. Hoeck, J. L. Casey, V. J. Murphy,
K. S. Harris, A. H. Batchelor, R. F. Anders, and M. Foley. 2006. The most
polymorphic residue on Plasmodium falciparum apical membrane antigen 1
determines binding of an invasion-inhibitory antibody. Infect. Immun. 74: 2628–
2636.

39. Kohler, B., R. Puzone, P. E. Seiden, and F. Celada. 2000. A systematic approach
to vaccine complexity using an automaton model of the cellular and humoral
immune system. I. Viral characteristics and polarized responses. Vaccine 19:
862–876.

40. Stanisic, D. I., J. S. Richards, F. J. McCallum, P. Michon, C. L. King,
S. Schoepflin, P. R. Gilson, V. J. Murphy, R. F. Anders, I. Mueller, and
J. G. Beeson. 2009. Immunoglobulin G subclass-specific responses against
Plasmodium falciparum merozoite antigens are associated with control of par-
asitemia and protection from symptomatic illness. Infect. Immun. 77: 1165–
1174.

41. Thera, M. A., O. K. Doumbo, D. Coulibaly, M. B. Laurens, A. Ouattara,
A. K. Kone, A. B. Guindo, K. Traore, I. Traore, B. Kouriba, et al. 2011. A field
trial to assess a blood-stage malaria vaccine. N. Engl. J. Med. 365: 1004–1013.

42. Duan, J., J. Mu, M. A. Thera, D. Joy, S. L. Kosakovsky Pond, D. Diemert,
C. Long, H. Zhou, K. Miura, A. Ouattara, et al. 2008. Population structure of the
genes encoding the polymorphic Plasmodium falciparum apical membrane an-
tigen 1: implications for vaccine design. Proc. Natl. Acad. Sci. USA 105: 7857–
7862.

43. Takala, S. L., D. Coulibaly, M. A. Thera, A. H. Batchelor, M. P. Cummings, A.
A. Escalante, A. Ouattara, K. Traore, A. Niangaly, A. A. Djimde, et al. 2009.
Extreme polymorphism in a vaccine antigen and risk of clinical malaria:
implications for vaccine development. Sci. Transl. Med. 1: 2ra5.

44. Dutta, S., S. Y. Lee, A. H. Batchelor, and D. E. Lanar. 2007. Structural basis of
antigenic escape of a malaria vaccine candidate. Proc. Natl. Acad. Sci. USA 104:
12488–12493.

45. Coley, A. M., A. Gupta, V. J. Murphy, T. Bai, H. Kim, M. Foley, R. F. Anders,
and A. H. Batchelor. 2007. Structure of the malaria antigen AMA1 in complex
with a growth-inhibitory antibody. PLoS Pathog. 3: 1308–1319.

46. Drew, D. R., A. N. Hodder, D. W. Wilson, M. Foley, I. Mueller, P. M. Siba,
A. E. Dent, A. F. Cowman, and J. G. Beeson. 2012. Defining the antigenic di-
versity of Plasmodium falciparum apical membrane antigen 1 and the require-
ments for a multi-allele vaccine against malaria. PLoS ONE 7: e51023.

47. Dutta, S., L. S. Dlugosz, D. R. Drew, X. Ge, D. Ababacar, Y. I. Rovira,
J. K. Moch, M. Shi, C. A. Long, M. Foley, et al. 2013. Overcoming antigenic
diversity by enhancing the immunogenicity of conserved epitopes on the malaria
vaccine candidate apical membrane antigen-1. [Published erratum appears in
2014 PLos Pathog. 10(1).] PLoS Pathog. 9: e1003840.

48. Kusi, K. A., B. W. Faber, A. W. Thomas, and E. J. Remarque. 2009. Humoral
immune response to mixed PfAMA1 alleles; multivalent PfAMA1 vaccines in-
duce broad specificity. PLoS ONE 4: e8110.

The Journal of Immunology 2085

 by guest on Septem
ber 24, 2014

http://w
w

w
.jim

m
unol.org/

D
ow

nloaded from
 



49. Miura, K., R. Herrera, A. Diouf, H. Zhou, J. Mu, Z. Hu, N. J. MacDonald,
K. Reiter, V. Nguyen, R. L. Shimp, Jr., et al. 2013. Overcoming allelic specificity
by immunization with five allelic forms of Plasmodium falciparum apical
membrane antigen 1. Infect. Immun. 81: 1491–1501.

50. Kennedy, M. C., J. Wang, Y. Zhang, A. P. Miles, F. Chitsaz, A. Saul, C. A. Long,
L. H. Miller, and A. W. Stowers. 2002. In vitro studies with recombinant
Plasmodium falciparum apical membrane antigen 1 (AMA1): production and
activity of an AMA1 vaccine and generation of a multiallelic response. Infect.
Immun. 70: 6948–6960.

51. Kusi, K. A., B. W. Faber, V. Riasat, A. W. Thomas, C. H. Kocken, and
E. J. Remarque. 2010. Generation of humoral immune responses to multi-allele
PfAMA1 vaccines; effect of adjuvant and number of component alleles on the
breadth of response. PLoS ONE 5: e15391.

52. Berek, C., and C. Milstein. 1988. The dynamic nature of the antibody repertoire.
Immunol. Rev. 105: 5–26.

53. Lodish, H., D. Baltimore, A. Berk, S. L. Zipursky, P. Matsudaira, and J. Darnell.
1999. Molecular Cell Biology. Scientific American Books, New York.

54. Tangye, S. G., D. T. Avery, E. K. Deenick, and P. D. Hodgkin. 2003. Intrinsic
differences in the proliferation of naive and memory human B cells as a mech-
anism for enhanced secondary immune responses. J. Immunol. 170: 686–694.

55. Liu, Y. J., J. Zhang, P. J. Lane, E. Y. Chan, and I. C. MacLennan. 1991. Sites of
specific B cell activation in primary and secondary responses to T cell-dependent
and T cell-independent antigens. Eur. J. Immunol. 21: 2951–2962.

56. Smith, K. G., T. D. Hewitson, G. J. Nossal, and D. M. Tarlinton. 1996. The
phenotype and fate of the antibody-forming cells of the splenic foci. Eur. J.
Immunol. 26: 444–448.

57. Driver, D. J., L. J. McHeyzer-Williams, M. Cool, D. B. Stetson, and
M. G. McHeyzer-Williams. 2001. Development and maintenance of a B2202
memory B cell compartment. J. Immunol. 167: 1393–1405.

58. Liu, X. Q., D. N. Hart, G. G. MacPherson, M. F. Good, and M. N. Wykes. 2008.
Soluble CD38 significantly prolongs the lifespan of memory B-cell responses.
Immunology 125: 14–20.

59. Dogan, I., B. Bertocci, V. Vilmont, F. Delbos, J. Mégret, S. Storck,
C. A. Reynaud, and J. C. Weill. 2009. Multiple layers of B cell memory with
different effector functions. Nat. Immunol. 10: 1292–1299.

60. Vieira, P., and K. Rajewsky. 1988. The half-lives of serum immunoglobulins in
adult mice. Eur. J. Immunol. 18: 313–316.

61. Morell, A., W. D. Terry, and T. A. Waldmann. 1970. Metabolic properties of IgG
subclasses in man. J. Clin. Invest. 49: 673–680.

62. Konterman, R. 2012. Therapeutic Proteins: Strategies to Modulate Their Plasma
Half-lives. Wiley-Blackwell, Weinham, Germany.

63. Zhang, J., I. C. MacLennan, Y. J. Liu, and P. J. Lane. 1988. Is rapid proliferation
in B centroblasts linked to somatic mutation in memory B cell clones? Immunol.
Lett. 18: 297–299.

64. Liao, Y. C., M. S. Lee, C. Y. Ko, and C. A. Hsiung. 2008. Bioinformatics models
for predicting antigenic variants of influenza A/H3N2 virus. Bioinformatics 24:
505–512.

65. Pan, K., K. C. Subieta, and M. W. Deem. 2011. A novel sequence-based anti-
genic distance measure for H1N1, with application to vaccine effectiveness and
the selection of vaccine strains. Protein Eng. Des. Sel. 24: 291–299.

66. DeKosky, B. J., G. C. Ippolito, R. P. Deschner, J. J. Lavinder, Y. Wine,
B. M. Rawlings, N. Varadarajan, C. Giesecke, T. Dörner, S. F. Andrews, et al.
2013. High-throughput sequencing of the paired human immunoglobulin heavy
and light chain repertoire. Nat. Biotechnol. 31: 166–169.

67. Parameswaran, P., Y. Liu, K. M. Roskin, K. K. Jackson, V. P. Dixit, J. Y. Lee,
K. L. Artiles, S. Zompi, M. J. Vargas, B. B. Simen, et al. 2013. Convergent
antibody signatures in human dengue. Cell Host Microbe 13: 691–700.

68. Remarque, E. J., B. W. Faber, C. H. Kocken, and A. W. Thomas. 2008. A
diversity-covering approach to immunization with Plasmodium falciparum api-
cal membrane antigen 1 induces broader allelic recognition and growth inhibi-
tion responses in rabbits. Infect. Immun. 76: 2660–2670.

69. Guenaga, J., P. Dosenovic, G. Ofek, D. Baker, W. R. Schief, P. D. Kwong,
G. B. Karlsson Hedestam, and R. T. Wyatt. 2011. Heterologous epitope-scaffold
prime:boosting immuno-focuses B cell responses to the HIV-1 gp41 2F5 neu-
tralization determinant. PLoS ONE 6: e16074.

70. Beltramello, M., K. L. Williams, C. P. Simmons, A. Macagno, L. Simonelli,
N. T. Quyen, S. Sukupolvi-Petty, E. Navarro-Sanchez, P. R. Young, A. M. de
Silva, et al. 2010. The human immune response to Dengue virus is dominated by
highly cross-reactive antibodies endowed with neutralizing and enhancing ac-
tivity. Cell Host Microbe 8: 271–283.

71. Dejnirattisai, W., A. Jumnainsong, N. Onsirisakul, P. Fitton, S. Vasanawathana,
W. Limpitikul, C. Puttikhunt, C. Edwards, T. Duangchinda, S. Supasa, et al.
2010. Cross-reacting antibodies enhance dengue virus infection in humans.
Science 328: 745–748.

72. Smith, S. A., Y. Zhou, N. P. Olivarez, A. H. Broadwater, A. M. de Silva, and
J. E. Crowe, Jr. 2012. Persistence of circulating memory B cell clones with
potential for dengue virus disease enhancement for decades following infection.
J. Virol. 86: 2665–2675.

2086 SIMULATING AFFINITY MATURATION IN POLYVALENT VACCINES

 by guest on Septem
ber 24, 2014

http://w
w

w
.jim

m
unol.org/

D
ow

nloaded from
 


